Glucose-6-Phosphate Dehydrogenase (G6PD) and Malaria

Structure of G6PD
- The enzyme, Glucose-6-Phosphate Dehydrogenase, is comprised of a dimer or tetramer of identical polypeptide chains
 - Each unit consists of 515 amino acids
- The single G6PD locus in humans is located on the telomeric region of the long arm of the X-chromosome
 - Females have two X chromosomes, hence two copies of G6PD, while males have only one X chromosome and one copy of G6PD

Function of G6PD
- G6PD is present in the cytoplasm of all cells of the body
 - In Red Blood Cells (RBC), which lack nuclei, mitochondria, and other organelles, G6PD is particularly significant
 - G6PD is involved in the first step of the Pentose Phosphate Shunt
 - Catalyzes the oxidation of Glucose-6-Phosphate to 6-Phosphogluconolactone (Phosphogluconate)
 - Only source of NADPH and GSH, necessary for the reduction of hydrogen peroxide
 - Hydrogen Peroxide is a strong oxidant that will degrade the RBC and cause hemolysis if it is not reduced

Familial Genetics of G6PD
- Five genotypes can form from combinations of one normal (Gd\(^B\)) and one deficient form (e.g., Gd\(^A\) or Gd\(^\text{Med}\)) of G6PD
 - Females
 - Gd\(^B\) Gd\(^B\), Homozygous Normal; “Normal”
 - Gd\(^B\) Gd\(^A\), Heterozygous; “Heterozygote”
 - Gd\(^a\) Gd\(^A\), Homozygous Deficient; “G6PD Deficient”
 - Males
 - Gd\(^B\), Hemizygous Normal; “Normal”
 - Gd\(^a\), Hemizygous Deficient; “G6PD Deficient”

Mendelian Transmission

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th>Females</th>
<th>Daughters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gd(^B)</td>
<td>Gd(^B)</td>
<td>Gd(^\text{Med})</td>
</tr>
<tr>
<td>Gd(^B)</td>
<td>Gd(^B) Gd(^B)</td>
<td>Gd(^B)</td>
<td>Gd(^B)</td>
</tr>
<tr>
<td>Gd(^\text{Med})</td>
<td>Gd(^B) Gd(^\text{Med})</td>
<td>Gd(^\text{Med})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sons</td>
</tr>
</tbody>
</table>
G6PD Heterozygotes

- Because of the random inactivation of one X chromosome in each female body cell, heterozygotes have two kinds of Red Blood Cells
 - G6PD Normal
 - G6PD Deficient
 - Depending on which X chromosome was inactivated in the stem cell giving rise to the particular RBC

G6PD Variants

<table>
<thead>
<tr>
<th></th>
<th>Normal Activity</th>
<th>All World Populations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd^B</td>
<td>Normal Activity; Aspartic acid substituted for asparagine at position 126, Guanine for adenine at DNA position 376</td>
<td>Africa (most common variant)</td>
</tr>
<tr>
<td>Gd^A</td>
<td>8 - 20% Normal Activity; Methionine for Valine at position 67 and Aspartic Acid for Asparagine at position 126, Adenine for Guanine at position 202 and Guanine for Adenine at position 376</td>
<td>Africa</td>
</tr>
<tr>
<td>Gd^Med</td>
<td>< 5% Normal Activity; Phenylalanine for Serine at position 188; Thymine for Cytosine at position 563</td>
<td>Iran, Iraq, India, Pakistan, Greece, Sardinia</td>
</tr>
</tbody>
</table>

G6PD Activity

- Declines with age of RBC
 - Gd^B has 62 day half-life for decay of activity
 - Sustains GSH levels for 100 to 120 day RBC life span
 - Gd^A has normal activity when new, but the activity half-life is only 13 days
 - Deficiency is due to instability of the enzyme
 - Gd^Med has greater instability with 8 day half-life
 - New cells already have reduced activity, and mature RBC have enzyme levels < 1% normal activity

Symptoms of G6PD deficiency

- G6PD deficiency is manifested as anemia, with RBCs being prematurely destroyed
 - RBCs are also extremely susceptible to oxidative stress
 - Neonatal jaundice is a yellowish discoloration of the whites of the eyes, skin, and mucous membranes caused by deposition of bile salts in these tissues
 - A severe form of this is a direct result of insufficient activity of the G6PD enzyme in the liver
 - In some cases, the neonatal jaundice is severe enough to cause death or permanent neurologic damage (Beutler, 1994)

Symptoms of G6PD deficiency, 2

- Outside areas where dietary components cause hemolytic crises, infection is the most common cause of hemolysis and anemia in subjects with G6PD deficiency
 - Oxidative metabolites produced by bacterial, viral, and rickettsial infections cause an anemic response
 - Viral hepatitis, pneumonia, and typhoid fever are particularly likely to precipitate a hemolytic episode in G6PD deficient individuals

G6PD Hemolysis

- Red blood cells will hemolyze or burst when the oxidant stress level becomes too high
 - Hemolysis occurs in G6PD deficient individuals due to the consumption of certain foods or drugs
 - Substances that increase the oxidation of glutathione, thereby diminishing the available GSH for oxidation of peroxide, creating a potential for hemolysis
 - Fava Beans contains vicine and convicine whose metabolites can cause a hemolytic crisis in Gd^Med individuals
 - Many anti-malarial drugs, sulfonamides, sulfoxides and other drugs produce the same reaction in severely deficient individuals
 - Can also cause the oxidation of hemoglobin, making it lose the ability to be a reversible oxygen carrier
Favism

- The Fava Bean (Vicia faba) is a favored cultigen in areas where the Gd^{mod} allele is common
 - Vicine and convicine make up about 0.5% of the wet weight of the Fava bean
 - These compounds metabolize to divicine and isouramil in the intestine
 - These metabolites decrease RBC reduced glutathione (GSH)
 - Increase the production of hydrogen peroxide and free radicals
 - Creates a severe oxidant stress in G6PD deficient cells

Plasmodium in the RBC

- *Plasmodium* protozoans preferentially attack immature RBC but *P. falciparum* can invade RBC of all ages
 - *Plasmodium* oxidizes RBC NADPH from the Pentose Phosphate pathway for its metabolism
 - This results in a deficiency of RBC GSH; most severe in G6PD deficient individuals, leading to peroxide-induced hemolysis which curtails the development of *Plasmodium*
 - After several cell cycles the Plasmodium can adapt to produce its own G6PD, reducing the adaptive benefit of G6PD deficiency

Fava Beans and Malaria

- Recall that fava beans contain compounds that metabolize to powerful oxidants
 - In a cell that is oxidant-stressed by *Plasmodium* infection, the addition of another strong oxidant can lead to a rapid build-up of peroxide
 - *In vitro* and *in vivo* (mouse) studies indicate a mild suppressant effect of divicine and isouramil on *Plasmodium in G6PD normals*
 - This effect is even greater in G6PD deficient individuals
Case Study: Gd^{Med} and Favism

- Fava bean cultivation is widespread, especially throughout the circum-Mediterranean region
- There is substantial overlap between the cultivation of fava beans and the Gd^{Med} allele
 - Serious cases of hemolytic favism are described more than 2,000 years ago by Greeks
 - About 1 in 12 cases of favism results in mortality
 - Mostly affects children (up to 95% of cases)
- Why continue to cultivate fava beans?

Nutrition and Fava Beans

- Fava beans are only one of several legumes cultivated in the Mediterranean including chick peas, kidney beans, and lentils
 - Fava beans are a highly productive crop and produce a high yield of protein by dry weight
 - However, kidney beans and chick peas are more efficient in terms of the ratio of weight of protein consumed to weight gained in growing individuals
 - Lentils are as efficient as fava beans
 - Continued use where Favism rates are high must be due to other factors

Responses to Favism

- Mediterranean populations have developed several responses including food taboos, preparation techniques, and folk remedies
 - Highly susceptible groups including children and pregnant women are frequently forbidden to consume fava beans
 - Drying, soaking, and removing the skins appear to reduce toxicity
 - Increasing sugar consumption reduces the severity of an impending hemolytic crisis

Continued Cultivation

- There are three lines of evidence that suggest continued cultivation of Fava Beans in the face of Favism is related to malaria
 - The association of divicine and isouramid with the suppression of *Plasmodium* growth
 - The clinical association of fava beans cultivation and malaria
 - The overlap of the peak fava bean harvest and consumption times with the peak *Anopheles* mosquito breeding season

Selection in Males

- Males are G6PD deficient or Normal
 - Malaria alone:
 - Select for an increase in Gd^{Med} because of resistance to *Plasmodium* in G6PD RBCs
 - Combination of Malaria and Fava beans:
 - Select against Gd^{Med} through favism and hemolytic anemia
 - Cooking and preparation techniques may buffer the favism selection
 - Other genes may also buffer favism
 - Acid Phosphatase B and β-Thalassaemia reduce severity
 - Decreased selection against Gd^{Med} through increased resistance to *Plasmodium* from fava beans
Selection in Females
- Malaria alone favors the heterozygotes
 - Selects against Gd^β/Gd^β, most susceptible genotype to *Plasmodium*
 - Anemia selects against Gd^β/Gd^βol, but they are resistant to severe malaria symptoms
- Heterozygotes (Gd^β/Gd^βol) are favored
 - Increased resistance to malaria compared to Gd^β/Gd^β
 - Less susceptible to hemolytic crises from diet or infection than Gd^β/Gd^βol
 - The balance is complicated by the random deactivation of an X chromosome in the cells producing the RBCs
 - Heterozygotes will range widely from about 20% normal to about 80% normal RBCs, and the response to malaria and other hemolytic crises will vary accordingly

Selection in Females, 2
- Combination of Malaria and Fava beans complicates selection
 - Fava beans intensify selection against Gd^βol/Gd^βol
 - Favism and increased incidence of hemolytic anemia
 - Cooking, preparation techniques, and other genes may buffer Gd^βol/Gd^βol from severe hemolytic crises
 - Decreased selection against Gd^β/Gd^β
 - Increased resistance to *Plasmodium* from fava beans
 - Heterozygotes (Gd^β/Gd^βol) are still most fit
 - The differential between Gd^β/Gd^βol and Gd^β/Gd^β
 - Resistance to malaria is reduced (selection is weaker)
 - Selection differential may be stronger against Gd^βol/Gd^βol because of the increased incidence of hemolytic crises due to favism